cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234310 Primes of the form 4^k + 4^m - 1, where k and m are positive integers.

Original entry on oeis.org

7, 19, 31, 67, 79, 127, 271, 1039, 1087, 1279, 4099, 4111, 4159, 5119, 8191, 16447, 20479, 65539, 65551, 65599, 81919, 131071, 262147, 262399, 263167, 266239, 524287, 1049599, 1114111, 1310719, 4194319, 4194559, 4195327, 16842751, 17825791, 67108879
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 23 2013

Keywords

Comments

Clearly each term is congruent to 1 modulo 6.
By the conjecture in A234309, this sequence should have infinitely many terms.
Note that any Mersenne prime greater than 3 has the form 2^{2*k+1} - 1 = 4^k + 4^k - 1, where k is a positive integer.

Examples

			a(1) = 7 since 7 = 4^1 + 4^1 - 1 is prime.
a(2) = 19 since 19 = 4^1 + 4^2 - 1 is prime.
a(3) = 31 since 31 = 4^2 + 4^2 - 1 is prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[4^k+4^m-1],n=n+1;Print[n," ",4^m+4^k-1]],{m,1,250},{k,1,m}]
  • PARI
    for(k=1,30,for(m=1,k,if(ispseudoprime(t=4^k+4^m-1),print1(t", ")))) \\ Charles R Greathouse IV, Dec 23 2013