A234310 Primes of the form 4^k + 4^m - 1, where k and m are positive integers.
7, 19, 31, 67, 79, 127, 271, 1039, 1087, 1279, 4099, 4111, 4159, 5119, 8191, 16447, 20479, 65539, 65551, 65599, 81919, 131071, 262147, 262399, 263167, 266239, 524287, 1049599, 1114111, 1310719, 4194319, 4194559, 4195327, 16842751, 17825791, 67108879
Offset: 1
Keywords
Examples
a(1) = 7 since 7 = 4^1 + 4^1 - 1 is prime. a(2) = 19 since 19 = 4^1 + 4^2 - 1 is prime. a(3) = 31 since 31 = 4^2 + 4^2 - 1 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..800
Programs
-
Mathematica
n=0;Do[If[PrimeQ[4^k+4^m-1],n=n+1;Print[n," ",4^m+4^k-1]],{m,1,250},{k,1,m}]
-
PARI
for(k=1,30,for(m=1,k,if(ispseudoprime(t=4^k+4^m-1),print1(t", ")))) \\ Charles R Greathouse IV, Dec 23 2013
Comments