This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234316 #28 Feb 16 2025 08:33:21 %S A234316 2,3,5,7,5,7,11,7,13,11,13,11,17,13,19,17,11,19,17,13,23,19,13,23,17, %T A234316 23,19,17,29,19,31,29,23,17,31,29,23,19,31,19,37,29,23,37,31,29,23,41, %U A234316 37,31,43,41,29,23,43,41,37,31,29,47,43,37,31,47,41,29,47,43,41,37,31 %N A234316 Irregular triangle T, read by rows, such that row n lists the larger parts of the Goldbach partitions of 2n (in decreasing order). %C A234316 Row n has first entry A060308(n), and length A045917(n). If Goldbach's conjecture is true, then each row of the triangle contains at least 1 entry. %C A234316 This is the companion irregular triangle to A184995. See the first formula. - _Wolfdieter Lang_, May 14 2016 %H A234316 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a> %H A234316 Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a> %H A234316 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A234316 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A234316 T(n,i) = 2n - A184995(n,i). %F A234316 T(n,i) = n + A182138(n,i). - _Ralf Stephan_, Dec 26 2013 %e A234316 The irregular triangle T(n,i) begins: %e A234316 n | 2*n | i = 1 2 3 4 5 6 ... %e A234316 ---+-----+------------------------------ %e A234316 2 | 4 | 2 %e A234316 3 | 6 | 3 %e A234316 4 | 8 | 5 %e A234316 5 | 10 | 7 5 %e A234316 6 | 12 | 7 %e A234316 7 | 14 | 11 7 %e A234316 8 | 16 | 13 11 %e A234316 9 | 18 | 13 11 %e A234316 10 | 20 | 17 13 %e A234316 11 | 22 | 19 17 11 %e A234316 12 | 24 | 19 17 13 %e A234316 13 | 26 | 23 19 13 %e A234316 14 | 28 | 23 17 %e A234316 15 | 30 | 23 19 17 %e A234316 16 | 32 | 29 19 %e A234316 17 | 34 | 31 29 23 17 %e A234316 18 | 36 | 31 29 23 19 %e A234316 19 | 38 | 31 19 %e A234316 20 | 40 | 37 29 23 %e A234316 21 | 42 | 37 31 29 23 %e A234316 22 | 44 | 41 37 31 %e A234316 23 | 46 | 43 41 29 23 %e A234316 24 | 48 | 43 41 37 31 29 %e A234316 25 | 50 | 47 43 37 31 %e A234316 26 | 52 | 47 41 29 %e A234316 27 | 54 | 47 43 41 37 31 %e A234316 28 | 56 | 53 43 37 %e A234316 29 | 58 | 53 47 41 29 %e A234316 30 | 60 | 53 47 43 41 37 31 %e A234316 ... Reformatted and extended. - _Wolfdieter Lang_, May 14 2016 %t A234316 Table[First /@ DeleteDuplicates@ Map[Sort[{#, 2 n - #}, Greater] &, Select[2 n - Prime@ Range@ PrimePi[2 n], PrimeQ]], {n, 30}] // Flatten (* _Michael De Vlieger_, May 15 2016 *) %o A234316 (PARI) for(n=2, 18, forprime(p=2, n, if(isprime(2*n-p), print1(2*n-p", ")))) \\ _Ralf Stephan_, Dec 26 2013 %Y A234316 Cf. A182138, A184995. %K A234316 nonn,tabf %O A234316 2,1 %A A234316 _Wesley Ivan Hurt_, Dec 23 2013