A234320 Largest number that is not the sum of distinct primes of the form 2k+1, 4k+1, 4k+3, 6k+1, 6k+5, ...; or 0 if none exists.
9, 121, 55, 205, 161
Offset: 1
Examples
The positive integers that are not the sum of distinct odd primes are A231408 = 1, 2, 4, 6, 9, so a(1) = A231408(5) = 9.
References
- A. Makowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 8 (1960), 125-126.
Links
- R. E. Dressler, A stronger Bertrand's postulate with an application to partitions, Proc. Amer. Math. Soc., 33 (1972), 226-228.
- R. E. Dressler, Addendum to "A stronger Bertrand's postulate with an application to partitions", Proc. Am. Math. Soc., 38 (1973), 667.
- R. E. Dressler, A. Makowski, and T. Parker, Sums of Distinct Primes from Congruence Classes Modulo 12, Math. Comp., 28 (1974), 651-652.
- T. Kløve, Sums of Distinct Elements from a Fixed Set, Math. Comp., 29 (1975), 1144-1149.
Comments