cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234324 Central terms of the triangle of central factorial numbers (A008955).

This page as a plain text file.
%I A234324 #11 Feb 19 2022 12:39:03
%S A234324 1,5,273,44473,14739153,8261931405,7026231453265,8439654758970225,
%T A234324 13611213226804376865,28383081191068916580565,
%U A234324 74326386672885754888959569,238812235698229573137588936105,923793013650701305781038113833585,4235104161629281000608041716747118685
%N A234324 Central terms of the triangle of central factorial numbers (A008955).
%C A234324 a(n) = A008955(2*n,n).
%H A234324 Reinhard Zumkeller, <a href="/A234324/b234324.txt">Table of n, a(n) for n = 0..120</a>
%F A234324 a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 30.472614208903344955058219429421999299236787591960717... and c = 0.27436634881777520262458169083560234658... - _Vaclav Kotesovec_, Aug 28 2017
%p A234324 b:= proc(n, k) option remember; `if`(k=0, 1,
%p A234324       add(b(j-1, k-1)*j^2, j=1..n))
%p A234324     end:
%p A234324 a:= n-> b(2*n, n):
%p A234324 seq(a(n), n=0..14);  # _Alois P. Heinz_, Feb 19 2022
%t A234324 Flatten[{1, Table[Coefficient[Expand[Product[1 + k^2*x, {k, 0, 2*n}]], x^n], {n, 1, 15}]}] (* _Vaclav Kotesovec_, Aug 28 2017 *)
%t A234324 Table[Sum[(-1)^(n-j) * StirlingS1[2*n+1, 2*n+1-j] * StirlingS1[2*n+1, j+1], {j, 0, 2*n}], {n, 0, 15}] (* _Vaclav Kotesovec_, Aug 28 2017 *)
%o A234324 (Haskell)
%o A234324 a234324 n = a008955 (2 * n) n
%Y A234324 Cf. A008955, A129505.
%K A234324 nonn
%O A234324 0,2
%A A234324 _Reinhard Zumkeller_, Dec 24 2013