This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234335 #7 Jul 03 2024 13:44:07 %S A234335 0,5,65,160,325,1025,2501,5185,5525,7200,9605,16385,26245,40001,40885, %T A234335 58565,82945,93925,97920,114245,153665,160225,187200,202501,204425, %U A234335 219385,262145,334085,419905,430625,521285,640001,707200,777925,781625,869465,937025,972725 %N A234335 Numbers k such that distances from k to three nearest squares are three perfect squares. %C A234335 A subsequence of A234334. %e A234335 5 is in the sequence because the following three are perfect squares: 5-4=1, 5-1=4, 9-5=4. %e A234335 65 is in the sequence because the following three are perfect squares: 65-64=1, 65-49=16, 81-65=16, where 49, 64, 81 are the three squares nearest to 65. %t A234335 ps3Q[n_]:=AllTrue[Take[Sort[Abs[n-(Floor[Sqrt[n]]+{-2,-1,0,1,2})^2]],3],IntegerQ[Sqrt[#]]&]; Join[ {0},Select[Range[2,10^6],ps3Q]] (* _Harvey P. Dale_, Jul 03 2024 *) %o A234335 (C) %o A234335 #include <stdio.h> %o A234335 #include <math.h> %o A234335 typedef unsigned long long U64; %o A234335 U64 isSquare(U64 a) { %o A234335 U64 r = sqrt(a); %o A234335 return r*r==a; %o A234335 } %o A234335 int main() { %o A234335 for (U64 n=0; ; ++n) { %o A234335 U64 r = sqrt(n); %o A234335 if (r*r==n && n) --r; %o A234335 if (isSquare(n-r*r) && isSquare((r+1)*(r+1)-n)) { %o A234335 U64 rp = (r+2)*(r+2)-n; %o A234335 r = n-(r-1)*(r-1); %o A234335 if (n<=1 || rp<r) r = rp; %o A234335 if (isSquare(r)) printf("%llu, ", n); %o A234335 } %o A234335 } %o A234335 return 0; %o A234335 } %Y A234335 Cf. A000290, A234334. %K A234335 nonn %O A234335 1,2 %A A234335 _Alex Ratushnyak_, Dec 23 2013