A234346 Primes of the form 3^k + 3^m - 1, where k and m are positive integers.
5, 11, 17, 29, 53, 83, 89, 107, 251, 269, 809, 971, 2213, 2267, 4373, 6563, 6569, 6803, 8747, 13121, 19709, 19763, 20411, 59051, 65609, 177173, 183707, 531521, 538001, 590489, 1062881, 1594331, 1594403, 1595051, 1596509, 4782971, 4782977, 4783697, 14348909
Offset: 1
Keywords
Examples
a(1) = 5 since 3^1 + 3^1 - 1 = 5 is prime. a(2) = 11 since 3^2 + 3^1 - 1 = 11 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
n=0;Do[If[PrimeQ[3^k+3^m-1],n=n+1;Print[n," ",3^k+3^m-1]],{m,1,310},{k,1,m}]
Comments