cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234348 Numbers k such that both distances from k to two nearest cubes are perfect cubes.

Original entry on oeis.org

0, 1, 152, 189, 513, 728, 5859, 6832, 64008, 68913, 150605, 155736, 345744, 355167, 1062936, 1090999, 1481571, 1520848, 6653933, 6742008, 7665056, 7742709, 9667693, 9796248, 15253056, 15438185, 16582104, 16592023, 16766568, 16776487, 26201448, 26460217, 28672299
Offset: 1

Views

Author

Alex Ratushnyak, Dec 24 2013

Keywords

Comments

Except a(1)=0, a(n) are numbers k such that both k-x and y-k are perfect cubes, where x and y are two nearest to k cubes: x < k <= y.

Examples

			152 is in the sequence because the following are cubes: 152-125=27 and 216-152=64, where 125 and 216 are the nearest to 152 cubes.
		

Crossrefs

Programs

  • C
    #include 
    #include    // gcc -O3 A234348.c -lgmp
    int main() {
      long long in=0;
      mpz_t n, r, i;
      mpz_init(r);
      mpz_init(i);
      mpz_init_set_ui(n, in);
      while (in < (1ULL<<32)) {
        if (mpz_root(r, n, 3) && in)  mpz_sub_ui(r, r, 1);
        mpz_mul(i, r, r);
        mpz_mul(i, i, r);
        mpz_sub(i, n, i);
        if (mpz_root(i, i, 3)) {
          mpz_add_ui(r, r, 1);
          mpz_mul(i, r, r);
          mpz_mul(i, i, r);
          mpz_sub(i, i, n);
          if (mpz_root(i, i, 3))  printf("%llu, ", in);
        }
        mpz_add_ui(n, n, 1);
        if ((++in&0xfffff)==0)  printf(".");
      }
      return 0;
    }