This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234350 #20 Feb 01 2014 04:46:50 %S A234350 1,1,1,1,2,4,5,2,3,10,22,24,8,1,4,22,77,153,140,47,2,5,41,217,713, %T A234350 1290,1112,322,15,7,72,530,2557,7374,11743,8783,2412,143,1,8,116,1149, %U A234350 7661,32477,82988,116154,77690,19621,1220,5,10,180,2288,20055,116420,433372 %N A234350 Triangle T(n, k) = Number of non-equivalent (mod D_3) ways to arrange k indistinguishable points on a triangular grid of side n so that no three points are collinear. Triangle read by rows. %C A234350 The triangle T(n, k) is irregularly shaped: 1 <= k <= A234349(n). First row corresponds to n = 1. %C A234350 The maximal number of points that can be placed on a triangular grid of side n so that no three points are collinear is given by A234349(n). %C A234350 Without the restriction "non-equivalent (mod D_3)" the numbers are given by A194136. %H A234350 Heinrich Ludwig, <a href="/A234350/b234350.txt">Table of n, a(n) for n = 1..152</a> %e A234350 Triangle begins %e A234350 1; %e A234350 1, 1, 1; %e A234350 2, 4, 5, 2; %e A234350 3, 10, 22, 24, 8, 1; %e A234350 4, 22, 77, 153, 140, 47, 2; %e A234350 5, 41, 217, 713, 1290, 1112, 322, 15; %e A234350 7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1; %e A234350 8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5; %e A234350 ... %e A234350 There are e.g. T(8, 11) = 5 non-equivalent ways to arrange 11 indistinguishable points (X) on a triangular grid of side 8 so that no point triple is collinear. As examples of the 5 solutions the 2 symmetrical ones are shown. %e A234350 . . %e A234350 . . . . %e A234350 . X . . X . %e A234350 X . . X X . . X %e A234350 X . . . X . X . X . %e A234350 . . X X . . X . . . . X %e A234350 . X . . . X . . . X . X . . %e A234350 . . X . . X . . . . X . . X . . %Y A234350 Cf. A194136 %Y A234350 Row lengths are given by A234349 %Y A234350 Column 1 is A001399 %Y A234350 Column 2 is A227327 for n >= 2 %Y A234350 Column 3 is A234351 %Y A234350 Column 4 is A234352 %Y A234350 Column 5 is A234353 %Y A234350 Column 6 is A234354. %K A234350 nonn,tabf,nice %O A234350 1,5 %A A234350 _Heinrich Ludwig_, Dec 24 2013