A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).
1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0
Examples
Array starts: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... (A000045) 2, 8, 24, 80, 256, 832, 2688, 8704,... (A063727, A085449) 3, 18, 81, 405, 1944, 9477, 45927,... (A122069, A099012) 4, 32, 192, 1280, 8192, 53248,... (A099133) 5, 50, 375, 3125, 25000, 203125,... 6, 72, 648, 6480, 62208, 606528,... ... Columns: A000027, A001105, A117642.
Programs
-
PARI
T(n,k)=n^k*fibonacci(k)
-
PARI
T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)
Formula
G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.