cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0

Views

Author

Ralf Stephan, Dec 24 2013

Keywords

Examples

			Array starts:
1,  2,   3,    5,     8,     13,    21,   34, 55, 89,...    (A000045)
2,  8,  24,   80,   256,    832,  2688, 8704,...   (A063727, A085449)
3, 18,  81,  405,  1944,   9477, 45927,...         (A122069, A099012)
4, 32, 192, 1280,  8192,  53248,...                         (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
		

Programs

  • PARI
    T(n,k)=n^k*fibonacci(k)
    
  • PARI
    T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)

Formula

G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.