cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234370 Primes which are the arithmetic mean of the squares of five consecutive primes.

This page as a plain text file.
%I A234370 #17 Aug 01 2020 19:32:53
%S A234370 2723401,13036537,52774873,78972121,116515177,123179113,235236049,
%T A234370 242120017,834990721,850037521,943067353,943804801,1302156313,
%U A234370 1582432681,1659047497,1830419449,1999538809,2025774697,2609800657
%N A234370 Primes which are the arithmetic mean of the squares of five consecutive primes.
%H A234370 K. D. Bajpai, <a href="/A234370/b234370.txt">Table of n, a(n) for n = 1..3270</a>
%e A234370 2723401 is in the sequence because (1627^2 + 1637^2 + 1657^2 + 1663^2 + 1667^2)/5 = 2723401 which is prime.
%e A234370 52774873 is in the sequence because (7243^2 + 7247^2 + 7253^2 + 7283^2 + 7297^2)/5 = 52774873 which is prime.
%p A234370 KD := proc() local a,b,d,e,f,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); f:=ithprime(n+4); g:=(a^2+b^2+d^2+e^2+f^2)/5; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=1..10000);
%t A234370 Select[Mean/@Partition[Prime[Range[6000]]^2,5,1],PrimeQ] (* _Harvey P. Dale_, Aug 01 2020 *)
%Y A234370 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
%Y A234370 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.
%K A234370 nonn
%O A234370 1,1
%A A234370 _K. D. Bajpai_, Dec 25 2013