A234388 Primes of the form 2^k*(2^{phi(m)} - 1) + 1, where k and m are positive integers, and phi(.) is Euler's totient function.
3, 5, 7, 13, 17, 31, 61, 97, 127, 193, 241, 257, 769, 1009, 1021, 2017, 4093, 7681, 8161, 8191, 12289, 15361, 16369, 16381, 32257, 61441, 64513, 65521, 65537, 131041, 131071, 523777, 524287, 786433, 1032193, 1048573, 4194301, 8257537, 8380417, 16515073, 16760833, 16776961, 16777153, 16777213, 67043329, 132120577, 134215681, 268369921, 536870401, 1073479681, 2013265921, 2113929217, 2146959361, 2147483137, 2147483647, 3221225473, 4293918721, 17175674881, 34359214081, 34359738337
Offset: 1
Keywords
Examples
a(1) = 3 since 2*(2^{phi(1)} - 1) + 1 = 3 is prime. a(2) = 5 since 2^2*(2^{phi(1)} - 1) + 1 = 5 is prime. a(3) = 7 since 2*(2^{phi(3)} - 1) + 1 = 7 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
S:=Intersection[Union[Table[EulerPhi[k],{k,1,5000}]],Table[k,{k,1,500}]] n=0;Do[If[MemberQ[S,k]&&PrimeQ[2^m-2^(m-k)+1],n=n+1;Print[n," ",2^m-2^(m-k)+1]],{m,1,500},{k,1,m-1}]
Comments