cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234429 Numbers which are the digital sum of the square of some prime.

This page as a plain text file.
%I A234429 #63 Apr 17 2025 09:52:10
%S A234429 4,7,9,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,
%T A234429 73,76,79,82,85,88,91,94,97,100,103,106,109,112,115,118,121,124,127,
%U A234429 130,133,136,139,142,145,148,151,154,157,160,163,166,169,172,175,178
%N A234429 Numbers which are the digital sum of the square of some prime.
%C A234429 A123157 sorted and duplicates removed.
%F A234429 From _Robert G. Wilson v_, Sep 28 2014: (Start)
%F A234429 Except for 3, all primes are congruent to +-1 (mod 3). Therefore, (3n +- 1)^2 = 9n^2 +- 6n + 1 which is congruent to 1 (mod 3).
%F A234429 4: 2, 11, 101, ... (A062397);
%F A234429 7: 5, 149, 1049, ... (A226803);
%F A234429 9: only 3;
%F A234429 10: 19, 71, 179, 251, 449, 20249, 24499, 100549, ... (A226802);
%F A234429 13: 7, 29, 47, 61, 79, 151, 349, 389, 461, 601, 1051, 1249, 1429, ... (A165492);
%F A234429 16: 13, 23, 31, 41, 59, 103, 131, 139, 211, 229, 239, 347, 401, ... (A165459);
%F A234429 19: 17, 37, 53, 73, 89, 107, 109, 127, 181, 199, 269, 271, 379, ... (A165493);
%F A234429 22: 43, 97, 191, 227, 241, 317, 331, 353, 421, 439, 479, 569, 619, 641, ...;
%F A234429 25: 67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, ... (A229058);
%F A234429 28: 163, 197, 233, 307, 359, 397, 431, 467, 487, 523, 541, 577, 593, 631, ...;
%F A234429 31: 83, 137, 173, 223, 263, 277, 281, 367, 443, 457, 547, 587, ... (A165502);
%F A234429 34: 167, 293, 383, 563, 607, 617, 733, 787, 823, 859, 877, 941, 967, 977, ...;
%F A234429 37: 433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, ... (A165503);
%F A234429 40: 313, 947, 983, 1303, 1483, 1609, 1663, 1933, 1973, 1987, 2063, 2113, ...;
%F A234429 43: 887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, ... (A165504);
%F A234429 46: 883, 937, 1367, 1637, 2213, 2447, 2683, 2791, 2917, 3313, 3583, 3833, ...;
%F A234429 49: 1667, 2383, 2437, 2617, 2963, 4219, 4457, 5087, 5281, 6113, 6163, ...;
%F A234429 ...  Also see A229058. (End)
%F A234429 Conjectures from _Chai Wah Wu_, Apr 16 2025: (Start)
%F A234429 a(n) = 2*a(n-1) - a(n-2) for n > 5.
%F A234429 G.f.: x*(2*x^4 - x^3 - x^2 - x + 4)/(x - 1)^2. (End)
%o A234429 (PARI) terms(nn) = {v = []; forprime (p = 1, nn, v = concat(v, sumdigits(p^2));); vecsort(v,,8);} \\ _Michel Marcus_, Jan 08 2014
%Y A234429 Cf. A067180, A067523, A123157, A056991.
%Y A234429 Cf. A062397, A226803, A226802, A165492, A165459  A165493, A229058, A165502, A165503, A165504.
%K A234429 nonn,base
%O A234429 1,1
%A A234429 _Antonio GraciĆ” Llorente_, Dec 26 2013
%E A234429 a(36) from _Michel Marcus_, Jan 08 2014
%E A234429 a(37)-a(54) from _Robert G. Wilson v_, Sep 28 2014
%E A234429 More terms from _Giovanni Resta_, Aug 15 2019