cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234432 Primes which are the arithmetic mean of the squares of six consecutive primes.

This page as a plain text file.
%I A234432 #12 Dec 27 2013 02:57:21
%S A234432 9413,25673,38237,43573,81553,106453,136273,145513,257857,294013,
%T A234432 325753,430433,497257,599273,702413,907733,948173,1238893,2053553,
%U A234432 2185577,2883457,3972113,4226077,4375177,4494577,4728313,6106141
%N A234432 Primes which are the arithmetic mean of the squares of six consecutive primes.
%H A234432 K. D. Bajpai, <a href="/A234432/b234432.txt">Table of n, a(n) for n = 1..8250</a>
%e A234432 9413 is in the sequence because (83^2 + 89^2 + 97^2 + 101^2 + 103^2 + 107^2)/6 = 9413 which is prime.
%e A234432 25673 is in the sequence because (149^2 + 151^2 + 157^2 + 163^2 + 167^2 + 173^2)/6 = 25673 which is prime.
%p A234432 KD := proc() local a,b,d,e,f,g,h; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); f:=ithprime(n+4);h:=ithprime(n+5); g:=(a^2+b^2+d^2+e^2+f^2+h^2)/6; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=2..1000);
%Y A234432 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
%Y A234432 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.
%K A234432 nonn
%O A234432 1,1
%A A234432 _K. D. Bajpai_, Dec 26 2013