This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234432 #12 Dec 27 2013 02:57:21 %S A234432 9413,25673,38237,43573,81553,106453,136273,145513,257857,294013, %T A234432 325753,430433,497257,599273,702413,907733,948173,1238893,2053553, %U A234432 2185577,2883457,3972113,4226077,4375177,4494577,4728313,6106141 %N A234432 Primes which are the arithmetic mean of the squares of six consecutive primes. %H A234432 K. D. Bajpai, <a href="/A234432/b234432.txt">Table of n, a(n) for n = 1..8250</a> %e A234432 9413 is in the sequence because (83^2 + 89^2 + 97^2 + 101^2 + 103^2 + 107^2)/6 = 9413 which is prime. %e A234432 25673 is in the sequence because (149^2 + 151^2 + 157^2 + 163^2 + 167^2 + 173^2)/6 = 25673 which is prime. %p A234432 KD := proc() local a,b,d,e,f,g,h; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); f:=ithprime(n+4);h:=ithprime(n+5); g:=(a^2+b^2+d^2+e^2+f^2+h^2)/6; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=2..1000); %Y A234432 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3. %Y A234432 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2. %K A234432 nonn %O A234432 1,1 %A A234432 _K. D. Bajpai_, Dec 26 2013