This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234433 #12 Dec 27 2013 02:55:49 %S A234433 3659642149,7045360877,13980508481,43207190581,55176987287, %T A234433 67967949209,85126672391,146447402879,263994755239,296875570279, %U A234433 344620720019,382820725229,400485072139,476566488179,527319634151,663284454649 %N A234433 Primes which are the arithmetic mean of the cubes of three consecutive primes. %H A234433 K. D. Bajpai, <a href="/A234433/b234433.txt">Table of n, a(n) for n = 1..7100</a> %e A234433 3659642149 is in the sequence because (1531^3 + 1543^3 + 1549^3)/3 = 3659642149 which is prime. %e A234433 7045360877 is in the sequence because (1907^3 + 1913^3+ 1931^3)/3 = 7045360877 which is prime. %p A234433 KD := proc() local a,b,d,e,f,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); g:=(a^3+b^3+d^3)/3; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=2..2000); %Y A234433 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3. %Y A234433 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2. %Y A234433 Cf. A234358: cubes which are the arithmetic mean of four consecutive primes. %K A234433 nonn %O A234433 1,1 %A A234433 _K. D. Bajpai_, Dec 26 2013