This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234459 #18 Aug 02 2018 15:19:36 %S A234459 1,-20,7800,530400000,2787453552000000,-7066368691421644800000000, %T A234459 3108366378804858902744832000000000000, %U A234459 1291087724942273632600239979303403520000000000000000 %N A234459 Real part of the product of all the integer complex numbers in the square [1,1] to [n,n]. %H A234459 Andrew Howroyd, <a href="/A234459/b234459.txt">Table of n, a(n) for n = 1..27</a> %e A234459 For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20. %t A234459 Table[Re[Times@@Flatten[Table[a + b I, {a, n}, {b, n}]]], {n, 20}] (* _Alonso del Arte_, Feb 04 2014 *) %o A234459 (JavaScript) %o A234459 function cNumber(x, y) { %o A234459 return [x, y]; %o A234459 } %o A234459 function cMult(a, b) { %o A234459 return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]]; %o A234459 } %o A234459 for (i = 1; i < 10; i++) { %o A234459 c = cNumber(1, 0); %o A234459 for (j = 1; j <= i; j++) %o A234459 for (k = 1; k <= i; k++) %o A234459 c = cMult(c, cNumber(j, k)); %o A234459 document.write(c + "<br>"); %o A234459 } %o A234459 (PARI) a(n) = real(prod(i=1, n, prod(j=1, n, i+I*j))); \\ _Michel Marcus_, Dec 27 2013 %Y A234459 Cf. A000142, A234460. %K A234459 sign %O A234459 1,2 %A A234459 _Jon Perry_, Dec 26 2013