cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234469 Primes which are the arithmetic mean of the cubes of four consecutive primes.

This page as a plain text file.
%I A234469 #16 Oct 12 2020 19:15:32
%S A234469 2077681,16244203,904456921,2500135411,2762662109,10064833601,
%T A234469 65794585811,122098559279,144790176847,245198071093,268215631223,
%U A234469 2038246966633,2782403547799,3022844332973,3593531892947
%N A234469 Primes which are the arithmetic mean of the cubes of four consecutive primes.
%H A234469 K. D. Bajpai, <a href="/A234469/b234469.txt">Table of n, a(n) for n = 1..3810</a>
%e A234469 2077681 is in the sequence because (113^3 + 127^3 + 131^3 + 137^3)/4 = 2077681 which is prime.
%e A234469 16244203 is in the sequence because (241^3 + 251^3 + 257^3 + 263^3)/4 = 16244203 which is prime.
%p A234469 KD := proc() local a,b,d,e,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); g:=(a^3+b^3+d^3+e^3)/4; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=1..5000);
%t A234469 Select[Mean/@Partition[Prime[Range[2000]]^3,4,1],PrimeQ] (* _Harvey P. Dale_, Oct 12 2020 *)
%Y A234469 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
%Y A234469 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.
%Y A234469 Cf. A234358: cubes which are the arithmetic mean of four consecutive primes.
%K A234469 nonn
%O A234469 1,1
%A A234469 _K. D. Bajpai_, Dec 26 2013