This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234469 #16 Oct 12 2020 19:15:32 %S A234469 2077681,16244203,904456921,2500135411,2762662109,10064833601, %T A234469 65794585811,122098559279,144790176847,245198071093,268215631223, %U A234469 2038246966633,2782403547799,3022844332973,3593531892947 %N A234469 Primes which are the arithmetic mean of the cubes of four consecutive primes. %H A234469 K. D. Bajpai, <a href="/A234469/b234469.txt">Table of n, a(n) for n = 1..3810</a> %e A234469 2077681 is in the sequence because (113^3 + 127^3 + 131^3 + 137^3)/4 = 2077681 which is prime. %e A234469 16244203 is in the sequence because (241^3 + 251^3 + 257^3 + 263^3)/4 = 16244203 which is prime. %p A234469 KD := proc() local a,b,d,e,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); g:=(a^3+b^3+d^3+e^3)/4; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=1..5000); %t A234469 Select[Mean/@Partition[Prime[Range[2000]]^3,4,1],PrimeQ] (* _Harvey P. Dale_, Oct 12 2020 *) %Y A234469 Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3. %Y A234469 Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2. %Y A234469 Cf. A234358: cubes which are the arithmetic mean of four consecutive primes. %K A234469 nonn %O A234469 1,1 %A A234469 _K. D. Bajpai_, Dec 26 2013