cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234499 Primes of the form (p*q*r*s - 1)/2, where p, q, r,s are distinct primes.

This page as a plain text file.
%I A234499 #10 Nov 30 2016 23:05:29
%S A234499 577,997,1567,1627,1657,2467,2557,2593,3391,3517,3547,3607,3697,3727,
%T A234499 3877,4231,4273,4357,4933,5167,5227,5347,5407,5527,5857,5869,6121,
%U A234499 6451,7297,7417,7927,8053,8179,8389,8431,8521,8627,8677,9091,9397,9439,9547,9613
%N A234499 Primes of the form (p*q*r*s - 1)/2, where p, q, r,s are distinct primes.
%H A234499 Harvey P. Dale, <a href="/A234499/b234499.txt">Table of n, a(n) for n = 1..100</a>
%e A234499 (See A234498.)
%t A234499 t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t - 1)/2, 120] (* A234105 *)
%t A234499 v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234498 *)
%t A234499 (w - 1)/2 (* A234499 *) (* _Peter J. C. Moses_, Dec 23 2013 *)
%t A234499 Module[{upto=10000,maxp},maxp=Ceiling[PrimePi[upto/30]];Select[Sort[ Select[ (#-1)/2&/@Times@@@Subsets[Prime[Range[maxp]],{4}], PrimeQ]], #<=upto&]] (* _Harvey P. Dale_, Feb 07 2016 *)
%Y A234499 Cf. A234105, A234499, A234500.
%K A234499 nonn,easy
%O A234499 1,1
%A A234499 _Clark Kimberling_, Jan 01 2014