cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234504 Number of ways to write n = k + m with k > 0 and m > 0 such that 2^(phi(k) + phi(m)/4) - 5 is prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 2, 3, 2, 3, 4, 5, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 5, 7, 8, 5, 7, 9, 8, 8, 6, 8, 7, 10, 7, 10, 10, 9, 9, 8, 9, 10, 5, 10, 10, 9, 10, 10, 9, 10, 9, 7, 12, 14, 10, 9, 5, 11, 7, 13, 8, 13, 6, 9, 11, 11, 14, 15, 9, 13
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 26 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 10.
We have verified this for n up to 50000. The conjecture implies that there are infinitely many primes of the form 2^n - 5.

Examples

			a(15) = 2 since 2^(phi(2) + phi(13)/4) - 5 = 2^4 - 5 = 11 and 2^(phi(3) + phi(12)/4) - 5 = 2^3 - 5 = 3 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=2^(EulerPhi[k]+EulerPhi[n-k]/4)-5
    a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]