A234504 Number of ways to write n = k + m with k > 0 and m > 0 such that 2^(phi(k) + phi(m)/4) - 5 is prime, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 2, 3, 2, 3, 4, 5, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 5, 7, 8, 5, 7, 9, 8, 8, 6, 8, 7, 10, 7, 10, 10, 9, 9, 8, 9, 10, 5, 10, 10, 9, 10, 10, 9, 10, 9, 7, 12, 14, 10, 9, 5, 11, 7, 13, 8, 13, 6, 9, 11, 11, 14, 15, 9, 13
Offset: 1
Keywords
Examples
a(15) = 2 since 2^(phi(2) + phi(13)/4) - 5 = 2^4 - 5 = 11 and 2^(phi(3) + phi(12)/4) - 5 = 2^3 - 5 = 3 are both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_,k_]:=2^(EulerPhi[k]+EulerPhi[n-k]/4)-5 a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments