This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234507 #24 Sep 08 2022 08:46:06 %S A234507 1,4,42,580,9139,155664,2791404,51919296,992414925,19375620264, %T A234507 384734333698,7745767624560,157746595917027,3243956787596560, %U A234507 67267249849483200,1404952651131292800,29529506061314207361,624113938377564174540,13256095235994257535900,282803564653982441429256,6057302574889055180495805 %N A234507 4*binomial(9*n+4,n)/(9*n+4). %C A234507 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=4. %H A234507 Vincenzo Librandi, <a href="/A234507/b234507.txt">Table of n, a(n) for n = 0..200</a> %H A234507 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A234507 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234507 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234507 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=4. %t A234507 Table[4 Binomial[9 n + 4, n]/(9 n + 4), {n, 0, 30}] %o A234507 (PARI) a(n) = 4*binomial(9*n+4,n)/(9*n+4); %o A234507 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/1))^1+x*O(x^n)); polcoeff(B, n)} %o A234507 (Magma) [1*Binomial(9*n+1, n)/(9*n+1): n in [0..30]]; %Y A234507 Cf. A000108, A143554, A234505, A234506, A234508, A234509, A234510, A234513, A232265. %K A234507 nonn %O A234507 0,2 %A A234507 _Tim Fulford_, Dec 27 2013