cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234508 5*binomial(9*n+5,n)/(9*n+5).

Original entry on oeis.org

1, 5, 55, 775, 12350, 211876, 3818430, 71282640, 1366368375, 26735839650, 531838637759, 10723307329700, 218658647805780, 4501362056183300, 93426735902060000, 1952884185072496992, 41074876852203972645, 868669222741822476975, 18460669540059117038250, 394033629095915025876750, 8443512680148379948569910
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=5.

Crossrefs

Programs

  • Magma
    [5*Binomial(9*n+5, n)/(9*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[9 n + 5, n]/(9 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(9*n+5,n)/(9*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=5.