cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234509 2*binomial(9*n+6,n)/(3*n+2).

This page as a plain text file.
%I A234509 #18 Sep 08 2022 08:46:06
%S A234509 1,6,69,992,15990,276360,5006386,93817152,1803606255,35373572460,
%T A234509 704995403541,14236901646240,290687378847684,5990903682047592,
%U A234509 124463414269524000,2603845580096662656,54807372993836345589,1159856934027109448130,24663454505518980363102,526708243449729452311200,11291926596343014148087470
%N A234509 2*binomial(9*n+6,n)/(3*n+2).
%C A234509 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=6.
%H A234509 Vincenzo Librandi, <a href="/A234509/b234509.txt">Table of n, a(n) for n = 0..200</a>
%H A234509 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H A234509 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>
%H A234509 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F A234509 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=6.
%t A234509 Table[6 Binomial[9 n + 6, n]/(9 n + 6), {n, 0, 30}]
%o A234509 (PARI) a(n) = 2*binomial(9*n+6,n)/(3*n+2);
%o A234509 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/2))^6+x*O(x^n)); polcoeff(B, n)}
%o A234509 (Magma) [2*Binomial(9*n+6, n)/(3*n+2): n in [0..30]];
%Y A234509 Cf. A000108, A143554, A234505, A234506, A234507, A234508, A234510, A234513, A232265.
%K A234509 nonn
%O A234509 0,2
%A A234509 _Tim Fulford_, Dec 27 2013