cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234525 Binomial(10*n+2,n)/(5*n+1).

This page as a plain text file.
%I A234525 #19 Sep 08 2022 08:46:06
%S A234525 1,2,21,310,5330,99960,1983049,40919714,869304150,18885977110,
%T A234525 417663940540,9371084905962,212791660837756,4880918206648000,
%U A234525 112925143575796455,2632162372046272660,61752662230350642670,1457074607325333325524
%N A234525 Binomial(10*n+2,n)/(5*n+1).
%C A234525 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=2.
%H A234525 Vincenzo Librandi, <a href="/A234525/b234525.txt">Table of n, a(n) for n = 0..200</a>
%H A234525 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H A234525 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>
%H A234525 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F A234525 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=2.
%F A234525 a(n) = 2*binomial(10n+1,n-1)/n for n>0, a(0)=1. [_Bruno Berselli_, Jan 19 2014]
%t A234525 Table[Binomial[10 n + 2, n]/(5 n + 1), {n, 0, 40}] (* _Vincenzo Librandi_, Dec 27 2013 *)
%o A234525 (PARI) a(n) = binomial(10*n+2,n)/(5*n+1);
%o A234525 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^5)^2+x*O(x^n)); polcoeff(B, n)}
%o A234525 (Magma) [Binomial(10*n+2, n)/(5*n+1): n in [0..30]]; // _Vincenzo Librandi_, Dec 27 2013
%Y A234525 Cf. A000108, A059968, A234526, A234527, A234528, A234529, A234570, A234571, A234573, A229963.
%K A234525 nonn
%O A234525 0,2
%A A234525 _Tim Fulford_, Dec 27 2013