This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234526 #19 Sep 08 2022 08:46:06 %S A234526 1,3,33,496,8610,162435,3235501,66959532,1425658806,31026962395, %T A234526 687124547340,15434728080408,350818684083868,8053515040969200, %U A234526 186457795206547635,4348790005989493960,102080931442008205230,2409777235191897422982 %N A234526 3*binomial(10*n+3,n)/(10*n+3). %C A234526 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=3. %H A234526 Vincenzo Librandi, <a href="/A234526/b234526.txt">Table of n, a(n) for n = 0..200</a> %H A234526 J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A234526 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234526 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234526 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=3. %t A234526 Table[3 Binomial[10 n + 3, n]/(10 n + 3), {n, 0, 30}] (* _Vincenzo Librandi_, Dec 28 2013 *) %o A234526 (PARI) a(n) = 3*binomial(10*n+3,n)/(10*n+3); %o A234526 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/3))^3+x*O(x^n)); polcoeff(B, n)} %o A234526 (Magma) [3*Binomial(10*n+3, n)/(10*n+3): n in [0..30]]; // _Vincenzo Librandi_, Dec 28 2013 %Y A234526 Cf. A000108, A059968, A234525, A234527, A234528, A234529, A234570, A234571, A234573, A229963. %K A234526 nonn %O A234526 0,2 %A A234526 _Tim Fulford_, Dec 27 2013