cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234527 2*binomial(10*n+4,n)/(5*n+2).

This page as a plain text file.
%I A234527 #20 Sep 08 2022 08:46:06
%S A234527 1,4,46,704,12341,234260,4685898,97274544,2075959314,45262862788,
%T A234527 1003884090440,22577660493024,513698787408521,11802947663348800,
%U A234527 273471432969603198,6382396843322710560,149902629054480517590,3540479504783000035464
%N A234527 2*binomial(10*n+4,n)/(5*n+2).
%C A234527 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=4.
%H A234527 Vincenzo Librandi, <a href="/A234527/b234527.txt">Table of n, a(n) for n = 0..200</a>
%H A234527 J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H A234527 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>
%H A234527 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F A234527 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=4.
%t A234527 Table[2 Binomial[10 n + 4, n]/(5 n + 2), {n, 0, 30}] (* _Vincenzo Librandi_, Dec 28 2013 *)
%o A234527 (PARI) a(n) = 2*binomial(10*n+4,n)/(5*n+2);
%o A234527 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/2))^4+x*O(x^n)); polcoeff(B, n)}
%o A234527 (Magma) [2*Binomial(10*n+4, n)/(5*n+2): n in [0..30]]; // _Vincenzo Librandi_, Dec 28 2013
%Y A234527 Cf. A000108, A059968, A234525, A234526, A234528, A234529, A234570, A234571, A234573, A229963.
%K A234527 nonn
%O A234527 0,2
%A A234527 _Tim Fulford_, Dec 27 2013