This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234532 #12 Jun 25 2022 17:08:10 %S A234532 9087,29751,291501,602617,1505505,1778337,1941997,2137857,3032415, %T A234532 4629695,5016947,5038917,7837551,8030737,9328807,11935651,19158427, %U A234532 35616757,40964001,41073817,42594697,44289817,56141827,59267551 %N A234532 Pentagonal numbers penta(n) = (p + q + r)/3 which are the arithmetic mean of three consecutive primes such that p < penta(n) < q < r. %C A234532 The n-th pentagonal number is (3*n^2 - n)/2 = n*(3*n - 1)/2. %H A234532 K. D. Bajpai, <a href="/A234532/b234532.txt">Table of n, a(n) for n = 1..3747</a> %e A234532 9087 is in the sequence because 9087 = 78 *(3*78 - 1)/2 = (9067 + 9091 + 9103)/3, the arithmetic mean of three consecutive primes. %e A234532 29751 is in the sequence because 29751 = 141*(3*141 - 1)/2 = (29741 + 29753 + 29759)/3, the arithmetic mean of three consecutive primes. %p A234532 KD := proc() local a,b,d,e,g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); g:=(b+d+e)/3; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000); %Y A234532 Cf. A000326 (pentagonal numbers: n * (3*n - 1)/2). %Y A234532 Cf. A069495 (squares: arithmetic mean of two consecutive primes). %Y A234532 Cf. A234240 (cubes: arithmetic mean of three consecutive primes). %K A234532 nonn %O A234532 1,1 %A A234532 _K. D. Bajpai_, Dec 27 2013