A234569 Primes p with P(p-1) also prime, where P(.) is the partition function (A000041).
3, 5, 7, 37, 367, 499, 547, 659, 1087, 1297, 1579, 2137, 2503, 3169, 3343, 4457, 4663, 5003, 7459, 9293, 16249, 23203, 34667, 39971, 41381, 56383, 61751, 62987, 72661, 77213, 79697, 98893, 101771, 127081, 136193, 188843, 193811, 259627, 267187, 282913, 315467, 320563, 345923, 354833, 459029, 482837, 496477, 548039, 641419, 647189
Offset: 1
Keywords
Examples
a(1) = 3 since P(2-1) = 1 is not prime, but P(3-1) = 2 is prime. a(2) = 5 since P(5-1) = 5 is prime. a(3) = 7 since P(7-1) = 11 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..113
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
n=0;Do[If[PrimeQ[PartitionsP[Prime[k]-1]],n=n+1;Print[n," ",Prime[k]]],{k,1,10^6}]
Comments