This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234570 #17 Sep 08 2022 08:46:06 %S A234570 1,7,91,1470,26565,514206,10426416,218618940,4701550770,103134123820, %T A234570 2298706645235,51909777109596,1185134654128425,27309853977084000, %U A234570 634361032466470620,14837590383963667320,349163392095422769942,8260872214482785042145,196380752260155290992675 %N A234570 7*binomial(10*n+7,n)/(10*n+7). %C A234570 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=7. %H A234570 Vincenzo Librandi, <a href="/A234570/b234570.txt">Table of n, a(n) for n = 0..200</a> %H A234570 J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A234570 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234570 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234570 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=7. %t A234570 Table[7 Binomial[10 n + 7, n]/(10 n + 7), {n, 0, 30}] %o A234570 (PARI) a(n) = 7*binomial(10*n+7,n)/(10*n+7); %o A234570 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/7))^7+x*O(x^n)); polcoeff(B, n)} %o A234570 (Magma) [7*Binomial(10*n+7, n)/(10*n+7): n in [0..30]]; %Y A234570 Cf. A000108, A059968, A234525, A234526, A234527, A234528, A234529, A234571, A234573, A229963. %K A234570 nonn %O A234570 0,2 %A A234570 _Tim Fulford_, Dec 28 2013