cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234572 Primes of the form P(p-1), where p is a prime and P(.) is the partition function (A000041).

This page as a plain text file.
%I A234572 #8 Dec 29 2013 01:29:54
%S A234572 2,5,11,17977,790738119649411319,2058791472042884901563,
%T A234572 27833079238879849385687,8121368081058512888507057,
%U A234572 675004412390512738195023734124239,1398703012615213588677365804960180341,16193798232344933888778097136641377589301,204931453786129197483756438132982529754356479553,3019564607799532159016586951616642980389816614848623,22757918197082858017617136646280039394687006502870793231847,1078734573992480956821414895441907729656949308800686938161281
%N A234572 Primes of the form P(p-1), where p is a prime and P(.) is the partition function (A000041).
%C A234572 Though the primes in this sequence are very rare, by the conjecture in A234567 there should be infinitely many such primes.
%C A234572 See A234569 for a list of known primes p with P(p-1) also prime.
%H A234572 Zhi-Wei Sun, <a href="/A234572/b234572.txt">Table of n, a(n) for n = 1..50</a>
%F A234572 a(n) = A000041(A234569(n)-1).
%e A234572 a(1) = 2 since 2 = P(3-1) with 2 and 3 both prime.
%e A234572 a(2) = 5 since 5 = P(5-1) with 5 prime.
%e A234572 a(3) = 11 since 11 = P(7-1) with 7 and 11 both prime.
%t A234572 p[n_]:= A234569(n)
%t A234572 Table[PartitionsP[p[n]-1],{n,1,15}]
%Y A234572 Cf. A000040, A000041, A049575, A233346, A234470, A234475, A234514, A234530, A234567, A234569
%K A234572 nonn
%O A234572 1,1
%A A234572 _Zhi-Wei Sun_, Dec 28 2013