This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234574 #24 May 19 2019 09:30:00 %S A234574 1,1,1,1,2,4,6,6,1,3,9,27,78,210,510,1050,1680,1680,1,4,16,64,256, %T A234574 1020,4020,15540,58380,210840,722400,2310000,6745200,17417400, %U A234574 37837800,63063000,63063000,1,5,25,125,625,3125,15620,77980,388220,1923180,9454620 %N A234574 T(n,k) is the number of size k ordered submultisets of the regular multiset {1_1,1_2,...,1_(n-1),1_n, ... ,i_1,i_2,...,i_(n-1),i_n, ... ,n_1,n_2,...,n_(n-1),n_n} (which contains n copies of i for 1 <= i <= n). %C A234574 A181567 gives the case for unordered submultisets. %H A234574 Alois P. Heinz, <a href="/A234574/b234574.txt">Rows n = 0..26, flattened</a> %H A234574 Thomas Wieder, <a href="/A234574/a234574.txt">Maple program for A234574</a> %e A234574 For n=2 we have the regular multiset L = [1,1,2,2]. %e A234574 We get the following ordered submultisets from L: %e A234574 For k=0 1 multiset: [] %e A234574 For k=1 2 multisets: [1], [2] %e A234574 For k=2 4 multisets: [1,1], [1,2], [2,1], [2,2] %e A234574 For k=3 6 multisets: [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1] %e A234574 For k=4 6 multisets: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1]. %e A234574 Triangle begins with: %e A234574 1; %e A234574 1, 1; %e A234574 1, 2, 4, 6, 6; %e A234574 1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680; %e A234574 1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000; %e A234574 ... %p A234574 # first Maple program: see link above %p A234574 # second Maple program: %p A234574 b:= proc(n, k, i) option remember; `if`(k=0, 1, %p A234574 `if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..n))) %p A234574 end: %p A234574 T:= (n, k)-> b(n, k, n)*k!: %p A234574 seq(seq(T(n, k), k=0..n^2), n=0..5); # _Alois P. Heinz_, Jul 04 2016 %Y A234574 Cf. A181567. %Y A234574 Row sums give A274762. %K A234574 nonn,tabf %O A234574 0,5 %A A234574 _Thomas Wieder_, Dec 29 2013 %E A234574 More terms from _Alois P. Heinz_, Jul 04 2016