A234604 Floor of the solutions to c = exp(1 + n/c) for n >= 0, using recursion.
2, 3, 4, 4, 5, 6, 6, 7, 17, 35, 62, 103, 164, 256, 391, 589, 880, 1303, 1919, 2814, 4112, 5993, 8716, 12655, 18353, 26591, 38499, 55710, 80583, 116523, 168453, 243485, 351889, 508506, 734776, 1061672, 1533938, 2216216
Offset: 0
Keywords
Formula
a(n) = floor(c) for the solutions to c = exp(1 + n/c) at n = 0 to 7, and the floor of the stable upper values of c for n >= 8.
Conjecture: a(n) = floor(e^(-e^(t^2/e^t - t)*t^2 + t + 1)) for all n > 13. - Jon E. Schoenfield, Jan 11 2014
Extensions
Corrected and edited by Jon E. Schoenfield, Jan 11 2014
Comments