cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234614 Decimal expansion of constant related to the growth of the number of totients.

This page as a plain text file.
%I A234614 #24 May 18 2020 11:34:15
%S A234614 8,1,7,8,1,4,6,4,0,0,8,3,6,3,2,2,3,1,5,2,5,5,9,6,8,0,0,9,0,2,9,6,5,6,
%T A234614 0,3,8,6,4,8,5,2,9,8,2,3,7,8,9,9,1,7,8,6,3,8,6,1,2,6,3,2,0,4,2,9,7,9,
%U A234614 1,0,0,5,2,4,5,4,9,6,4,2,1,9,6,7,0,4,6
%N A234614 Decimal expansion of constant related to the growth of the number of totients.
%C A234614 Let f_k(x) = x * exp(k (log log log x)^2)/log x. Maier & Pomerance show that, for any e > 0, f_{c-e}(x) << g(x) << f_{c+e}(x) where g(x) gives the number of totients less than x and c is this constant. Loosely, this means f_c(A007617(n)) is about n.
%H A234614 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, p. 16.
%H A234614 Kevin Ford, <a href="http://www.math.uiuc.edu/~ford/wwwpapers/totients.pdf">The distribution of Totients</a>
%H A234614 Helmut Maier and Carl Pomerance, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4934.pdf">On the number of distinct values of Euler's phi-function</a>, Acta Arithmetica 49 (1988), pp. 263-275.
%F A234614 See Maier & Pomerance p. 264.
%F A234614 Equals -1/(2*log(c0)), where c0 is a constant whose decimal expansion is A246746. - _Amiram Eldar_, Jun 19 2018
%e A234614 0.81781464008363223152559680090296560386485298237899...
%t A234614 digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[rho, 10, digits] // First ;RealDigits[-1/2/Log[rho],10,90][[1]] (* after _Jean-François Alcover_ at A246746 *)
%Y A234614 Cf. A007617, A246746.
%K A234614 nonn,cons
%O A234614 0,1
%A A234614 _Charles R Greathouse IV_, Dec 28 2013
%E A234614 a(8) corrected and more terms added by _Amiram Eldar_, Jun 19 2018