cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234644 Primes p with q(p) - 1 also prime, where q(.) is the strict partition function (A000009).

Original entry on oeis.org

5, 11, 13, 17, 19, 23, 41, 43, 53, 59, 79, 103, 151, 191, 269, 277, 283, 373, 419, 521, 571, 577, 607, 829, 859, 1039, 2503, 2657, 2819, 3533, 3671, 4079, 4153, 4243, 4517, 4951, 4987, 5689, 5737, 5783, 7723, 8101, 9137, 9173, 9241, 9539, 11467, 12323, 12697, 15017, 15277, 15427, 15803, 16057, 17959, 18661
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

By the conjecture in A234615, this sequence should have infinitely many terms.
See A234647 for primes of the form q(p) - 1 with p prime.
See also A234530 for a similar sequence.

Examples

			a(1) = 5 since neither q(2) - 1 = 0 nor q(3) - 1 = 1 is prime, but q(5) - 1 = 2 is prime.
a(2) = 11 since q(7) - 1 = 4 is composite, but q(11) - 1 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    q[k_]:=q[k]=PrimeQ[PartitionsQ[Prime[k]]-1]
    n=0;Do[If[q[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10^5}]