This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234645 #20 Dec 09 2024 05:28:23 %S A234645 1,3,13,56,84,312,256,660,800,1332,1344,3458,2240,3792,4836,6572,4356, %T A234645 13440,6160,16800,13312,15192,11136,35685,19840,25284,30976,42560, %U A234645 22740,63648,30464,71820,51792,65664,53952,111440,52136,84480,99008,133560,75264 %N A234645 Sum of the divisors of n^3+1. %H A234645 Vincenzo Librandi, <a href="/A234645/b234645.txt">Table of n, a(n) for n = 0..1000</a> %F A234645 a(n) = A000203(A001093(n)). - _Michel Marcus_, Jun 19 2015 %F A234645 Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.449926279... . - _Amiram Eldar_, Dec 09 2024 %e A234645 a(4) = 84 because 4^3+1 = 65 and the sum of the 4 divisors {1, 5, 13, 65} is 84. %t A234645 Table[Total[Divisors[n^3 + 1]], {n, 0, 50}] %t A234645 DivisorSigma[1,Range[0,40]^3+1] (* _Harvey P. Dale_, Jul 27 2021 *) %o A234645 (Magma) [SumOfDivisors(n^3+1): n in [0..50]]; %o A234645 (PARI) a(n) = sigma(n^3+1); \\ _Michel Marcus_, Jun 19 2015 %Y A234645 Cf. A000203, A001093, A062835, A065764, A175926, A193433, A333240. %K A234645 nonn,easy %O A234645 0,2 %A A234645 _Vincenzo Librandi_, Jan 01 2014