A234694 a(n) = |{0 < k < n: p = k + prime(n-k) and prime(p) - p + 1 are both prime}|.
0, 1, 0, 2, 1, 2, 1, 0, 0, 2, 2, 4, 1, 1, 2, 4, 2, 1, 1, 2, 3, 3, 2, 3, 1, 1, 1, 3, 5, 4, 3, 4, 3, 3, 3, 2, 4, 3, 2, 5, 4, 4, 4, 1, 1, 5, 4, 2, 1, 2, 5, 5, 2, 3, 4, 2, 3, 5, 7, 7, 6, 2, 5, 6, 2, 5, 4, 4, 7, 6, 6, 5, 4, 8, 7, 4, 5, 3, 5, 7, 3, 5, 4, 7, 6, 7, 2
Offset: 1
Keywords
Examples
a(5) = 1 since 2 + prime(3) = 7 and prime(7) - 6 = 11 are both prime. a(25) = 1 since 20 + prime(5) = 31 and prime(31) - 30 = 97 are both prime. a(27) = 1 since 18 + prime(9) = 41 and prime(41) - 40 = 139 are both prime. a(45) = 1 since 6 + prime(39) = 173 and prime(173) - 172 = 859 are both prime. a(49) = 1 since 26 + prime(23) = 109 and prime(109) - 108 = 491 are both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
f[n_,k_]:=k+Prime[n-k] q[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[Prime[f[n,k]]-f[n,k]+1] a[n_]:=Sum[If[q[n,k],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments