cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234694 a(n) = |{0 < k < n: p = k + prime(n-k) and prime(p) - p + 1 are both prime}|.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 1, 0, 0, 2, 2, 4, 1, 1, 2, 4, 2, 1, 1, 2, 3, 3, 2, 3, 1, 1, 1, 3, 5, 4, 3, 4, 3, 3, 3, 2, 4, 3, 2, 5, 4, 4, 4, 1, 1, 5, 4, 2, 1, 2, 5, 5, 2, 3, 4, 2, 3, 5, 7, 7, 6, 2, 5, 6, 2, 5, 4, 4, 7, 6, 6, 5, 4, 8, 7, 4, 5, 3, 5, 7, 3, 5, 4, 7, 6, 7, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 9. Also, for any integer n > 51 there is a positive integer k < n such that p = k + prime(n-k) and prime(p) + p + 1 are both prime.
(ii) If n > 9 (or n > 21), then there is a positive integer k < n such that m - 1 and prime(m) + m (or prime(m) - m, resp.) are both prime, where m = k + prime(n-k).
(iii) If n > 483, then for some 0 < k < n both prime(m) + m and prime(m) - m are prime, where m = k + prime(n-k).
(iv) If n > 3, then there is a positive integer k < n such that prime(k + prime(n-k)) + 2 is prime.
Clearly, part (i) of the conjecture implies that there are infinitely many primes p with prime(p) - p + 1 (or prime(p) + p + 1) also prime.
See A234695 for primes p with prime(p) - p + 1 also prime.

Examples

			a(5) = 1 since 2 + prime(3) = 7 and prime(7) - 6 = 11 are both prime.
a(25) = 1 since 20 + prime(5) = 31 and prime(31) - 30 = 97 are both prime.
a(27) = 1 since 18 + prime(9) = 41 and prime(41) - 40 = 139 are both prime.
a(45) = 1 since 6 + prime(39) = 173 and prime(173) - 172 = 859 are both prime.
a(49) = 1 since 26 + prime(23) = 109 and prime(109) - 108 = 491 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=k+Prime[n-k]
    q[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[Prime[f[n,k]]-f[n,k]+1]
    a[n_]:=Sum[If[q[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]