A234695 Primes p with prime(p) - p + 1 also prime.
2, 3, 5, 7, 13, 17, 23, 31, 41, 43, 61, 71, 83, 89, 103, 109, 139, 151, 173, 181, 199, 211, 223, 241, 271, 277, 281, 293, 307, 311, 317, 337, 349, 353, 367, 463, 499, 541, 563, 571, 601, 661, 673, 709, 719, 743, 751, 757, 811, 823, 827, 883, 907, 911, 953
Offset: 1
Keywords
Examples
a(1) = 2 since prime(2) - 1 = 2 is prime. a(2) = 3 since prime(3) - 2 = 3 is prime. a(3) = 5 since prime(5) - 4 = 7 is prime. a(4) = 7 since prime(7) - 6 = 11 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
n=0;Do[If[PrimeQ[Prime[Prime[k]]-Prime[k]+1],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}]
-
PARI
forprime(p=1,999,isprime(prime(p)-p+1)&&print1(p",")) \\ - M. F. Hasler, Dec 31 2013
Formula
a(n) = prime(A234852(n)). - M. F. Hasler, Dec 31 2013
Comments