cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A234759 Number of (n+1)X(7+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

56585338, 237446135146, 738613242438722, 2459819737238954066, 8077924001895128842744, 26609690894048025312611822, 87598290205388887442345353876, 288412121741126213605068521082634
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 7 of A234760

Examples

			Some solutions for n=1
..0..0..1..0..1..2..3..3....0..0..0..0..0..1..0..2....0..0..0..1..2..1..3..3
..0..0..0..1..0..2..2..1....0..0..0..1..0..0..1..1....0..0..0..0..3..2..3..3
		

A234753 Number of (n+1) X (1+1) 0..3 arrays with 2 X 2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

110, 1014, 8968, 80010, 712722, 6350732, 56585338, 504183278, 4492335124, 40027273406, 356648038986, 3177778909824, 28314409931414, 252284955262302, 2247890695972232, 20028988949649010, 178460811756944538
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Examples

			Some solutions for n=4:
..0..1....1..0....2..2....2..3....0..2....1..3....3..1....1..2....2..1....1..1
..1..1....1..1....0..1....3..2....1..1....2..2....2..2....2..3....0..0....1..1
..2..1....2..2....3..2....2..2....2..2....3..2....1..2....1..2....1..1....1..0
..1..0....3..3....2..2....1..1....1..1....2..3....0..3....0..1....1..1....2..2
..2..3....1..2....2..3....2..0....2..2....3..3....1..2....2..2....1..0....1..2
		

Crossrefs

Column 1 of A234760.

Formula

Empirical: a(n) = 8*a(n-1) + 10*a(n-2) - 16*a(n-3) - 8*a(n-4) + 4*a(n-5) + a(n-6).
Empirical g.f.: 2*x*(55 + 67*x - 122*x^2 - 57*x^3 + 33*x^4 + 8*x^5) / (1 - 8*x - 10*x^2 + 16*x^3 + 8*x^4 - 4*x^5 - x^6). - Colin Barker, Oct 16 2018

A234754 Number of (n+1)X(2+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

1014, 26642, 646036, 15939010, 392044622, 9648827736, 237446135146, 5843394219306, 143801532689336, 3538850266550630, 87088497253969902, 2143183802626938104, 52742175287648016058, 1297946099417129620238
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 2 of A234760

Examples

			Some solutions for n=2
..3..2..3....2..1..0....1..2..1....0..2..0....0..1..1....3..2..1....3..1..3
..0..1..2....1..1..1....2..2..1....1..1..1....2..2..3....1..2..3....2..2..2
..1..0..1....1..1..0....3..2..3....0..2..1....0..1..1....0..1..1....3..1..0
		

Formula

Empirical: a(n) = 27*a(n-1) -26*a(n-2) -884*a(n-3) +1597*a(n-4) +7345*a(n-5) -14758*a(n-6) -23881*a(n-7) +52625*a(n-8) +29984*a(n-9) -81577*a(n-10) -7015*a(n-11) +51495*a(n-12) -7850*a(n-13) -9139*a(n-14) +1340*a(n-15) +518*a(n-16) -36*a(n-17)

A234755 Number of (n+1)X(3+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

8968, 646036, 41065150, 2683721676, 174451064914, 11352560005654, 738613242438722, 48057390396250352, 3126794045459927262, 203441328354140321486, 13236675571733137508104, 861229107849713487636906
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 3 of A234760

Examples

			Some solutions for n=1
..0..0..1..2....3..0..1..1....0..0..3..3....2..2..1..0....1..3..1..0
..2..1..0..3....2..1..1..0....2..1..2..3....2..1..2..2....2..2..1..2
		

Formula

Empirical recurrence of order 55 (see link above)

A234756 Number of (n+1)X(4+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

80010, 15939010, 2683721676, 469243923298, 81436516016562, 14155719250115192, 2459819737238954066, 427468816063895627714, 74284713081666378716324, 12909093718494739038921470, 2243322903467332769441789170
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 4 of A234760

Examples

			Some solutions for n=1
..3..2..2..0..1....2..1..1..2..1....2..1..2..1..1....1..2..3..3..2
..3..2..1..1..2....0..1..2..1..2....1..2..1..2..1....2..1..3..3..2
		

A234757 Number of (n+1)X(5+1) 0..3 arrays with 2X2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

712722, 392044622, 174451064914, 81436516016562, 37650372740746368, 17443322778721788150, 8077924001895128842744, 3741199763580832200930610, 1732660582029609793434136186, 802449881238851602750335840920
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 5 of A234760

Examples

			Some solutions for n=1
..1..0..1..3..2..0....0..1..1..2..1..2....3..2..1..0..2..0....1..0..1..2..1..0
..0..1..2..2..2..1....0..1..1..3..3..3....0..1..2..0..1..0....0..1..0..0..0..1
		

A234758 Number of (n+1) X (6+1) 0..3 arrays with 2 X 2 edge jumps all no more than +1 in one of the clockwise or counterclockwise directions or both.

Original entry on oeis.org

6350732, 9648827736, 11352560005654, 14155719250115192, 17443322778721788150, 21550277301402213440174, 26609690894048025312611822, 32860797539558791502159176652, 40579386469875550478586589580206
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2013

Keywords

Comments

Column 6 of A234760.

Examples

			Some solutions for n=1
..0..1..0..0..0..2..1....0..0..0..1..0..2..1....0..0..0..2..3..3..2
..0..0..0..1..1..2..1....0..1..0..0..0..1..2....0..0..1..1..2..3..2
		

Crossrefs

Cf. A234760.
Showing 1-7 of 7 results.