This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234787 #27 Dec 15 2019 08:36:07 %S A234787 1000,64000,729000,4096000,15625000,46656000,117649000,262144000, %T A234787 531441000,1000000000,1771561000,2985984000,4826809000,7529536000, %U A234787 11390625000,16777216000,24137569000,34012224000,47045881000,64000000000 %N A234787 Cubes (with at least two digits) that become squares when their rightmost digit is removed. %C A234787 With the help of the Nagell-Lutz theorem it is easy to prove that there are no other solutions than those of the form 1000*n^6. %H A234787 Georg Fischer, <a href="/A234787/b234787.txt">Table of n, a(n) for n = 1..300</a> [a(1..204) from Reiner Moewald] %H A234787 Wikipedia, <a href="https://en.wikipedia.org/wiki/Nagell%E2%80%93Lutz_theorem">Nagell-Lutz theorem</a>. %H A234787 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A234787 a(n) = 1000*n^6. %F A234787 From _Colin Barker_, Dec 15 2019: (Start) %F A234787 G.f.: 1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7. %F A234787 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7. %F A234787 (End) %o A234787 (PARI) lista(nn) = {for (n=1, nn, if (((cb = n^3) > 10) && issquare(cb\10), print1(cb, ", ")););} \\ _Michel Marcus_, Jan 10 2014 %o A234787 (PARI) Vec(1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ _Colin Barker_, Dec 15 2019 %Y A234787 Cf. A226354. %Y A234787 Subsequence of A000578. %K A234787 nonn,base,easy %O A234787 1,1 %A A234787 _Reiner Moewald_, Dec 30 2013