This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234810 #23 Jun 19 2021 20:10:41 %S A234810 29,353,7596952219 %N A234810 Primes p such that p^2 divides 14^(p-1) - 1. %C A234810 Base 14 Wieferich primes. %H A234810 Amir Akbary and Sahar Siavashi, <a href="http://math.colgate.edu/~integers/s3/s3.Abstract.html">The Largest Known Wieferich Numbers</a>, INTEGERS, 18(2018), A3. See Table 1 p. 5. %H A234810 Petr Ležák, <a href="http://download2.polytechnic.edu.na/pub4/sourceforge/w/wi/wieferich/results/table.txt">Solutions of equation a^(p-1) mod p^2 = 1, p is prime</a> %H A234810 P. L. Montgomery, <a href="http://dx.doi.org/10.1090/S0025-5718-04-01666-7">New solutions of a^p-1 == 1 (mod p^2)</a>, Math. Comp., 61 (203), 361-363 %t A234810 Select[Prime[Range[200]], Divisible[14^(# - 1) - 1, #^2] &] (* _Alonso del Arte_, Apr 20 2014 *) %t A234810 Select[Prime[Range[200]],PowerMod[14,#-1,#^2]==1&] (* The program generates the first two terms of the sequence. To generate the third term, increase the Range constant to 351*10^5, but the program will take a long time to run. *) (* _Harvey P. Dale_, Jun 19 2021 *) %o A234810 (PARI) %o A234810 N=10^9; default(primelimit, N); %o A234810 forprime(n=2, N, if(Mod(14, n^2)^(n-1)==1, print1(n, ", "))); %Y A234810 Cf. A001220. %K A234810 nonn,hard,bref,more %O A234810 1,1 %A A234810 _Felix Fröhlich_, Apr 19 2014