This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234870 #17 Sep 08 2022 08:46:06 %S A234870 1,4,50,840,16215,339416,7492342,171714400,4046995095,97464474800, %T A234870 2388021782916,59337354111464,1491714713034000,37872300445759440, %U A234870 969656048236053850,25008097347083474496,649098691321081570855,16942574600154870074100 %N A234870 4*binomial(11*n+4,n)/(11*n+4). %C A234870 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=4. %H A234870 Vincenzo Librandi, <a href="/A234870/b234870.txt">Table of n, a(n) for n = 0..200</a> %H A234870 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A234870 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234870 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234870 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=4. %t A234870 Table[4 Binomial[11 n + 4, n]/(11 n + 4), {n, 0, 40}] (* _Vincenzo Librandi_, Jan 01 2014 *) %o A234870 (PARI) a(n) = 4*binomial(11*n+4,n)/(11*n+4); %o A234870 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/4))^4+x*O(x^n)); polcoeff(B, n)} %o A234870 (Magma) [4*Binomial(11*n+4,n)/(11*n+4): n in [0..30]]; // _Vincenzo Librandi_, Jan 01 2014 %Y A234870 Cf. A230388, A234868, A234869, A234871, A234872, A234873. %K A234870 nonn %O A234870 0,2 %A A234870 _Tim Fulford_, Jan 01 2014