This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234872 #25 Aug 23 2025 23:15:28 %S A234872 1,6,81,1406,27636,585162,13019909,300138696,7105216833,171717015470, %T A234872 4219267597578,105085831400550,2647012241261856,67316157557021436, %U A234872 1726006087183713615,44570883175043934384,1158139943222389790715 %N A234872 a(n) = 6*binomial(11*n+6,n)/(11*n+6). %C A234872 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=6. %H A234872 Vincenzo Librandi, <a href="/A234872/b234872.txt">Table of n, a(n) for n = 0..200</a> %H A234872 J-C. Aval, <a href="https://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669. %H A234872 Thomas A. Dowling, <a href="https://web.archive.org/web/20140327153135/http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234872 Wojciech Mlotkowski, <a href="https://doi.org/10.4171/dm/318">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234872 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=6. %F A234872 a(n) ~ 3*4^(-3-5*n)*5^(-13/2-10*n)*11^(11/2+11*n)/(n^(3/2)*sqrt(Pi)). - _Stefano Spezia_, Aug 23 2025 %t A234872 Table[6 Binomial[11 n + 6, n]/(11 n + 6), {n, 0, 40}] (* _Vincenzo Librandi_, Jan 01 2014 *) %o A234872 (PARI) a(n) = 6*binomial(11*n+6,n)/(11*n+6); %o A234872 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/6))^6+x*O(x^n)); polcoeff(B, n)} %o A234872 (Magma) [6*Binomial(11*n+6,n)/(11*n+6): n in [0..30]]; // _Vincenzo Librandi_, Jan 01 2014 %Y A234872 Cf. A230388, A234868, A234869, A234870, A234871, A234873. %K A234872 nonn,changed %O A234872 0,2 %A A234872 _Tim Fulford_, Jan 01 2014