This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234873 #18 Sep 08 2022 08:46:06 %S A234873 1,7,98,1729,34300,730597,16323468,377447148,8956384437,216859117475, %T A234873 5336519142108,133078780790725,3355661187741408,85414540549845934, %U A234873 2191753761503128400,56636249639625891144,1472525237190942707955 %N A234873 7*binomial(11*n+7,n)/(11*n+7). %C A234873 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=7. %H A234873 Vincenzo Librandi, <a href="/A234873/b234873.txt">Table of n, a(n) for n = 0..200</a> %H A234873 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A234873 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A234873 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A234873 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=7. %t A234873 Table[7 Binomial[11 n + 7, n]/(11 n + 7), {n, 0, 30}] (* _Vincenzo Librandi_, Jan 01 2014 *) %o A234873 (PARI) a(n) = 7*binomial(11*n+7,n)/(11*n+7); %o A234873 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/7))^7+x*O(x^n)); polcoeff(B, n)} %o A234873 (Magma) [7*Binomial(11*n+7,n)/(11*n+7): n in [0..30]]; // _Vincenzo Librandi_, Jan 01 2014 %Y A234873 Cf. A230388, A234868, A234869, A234870, A234871, A234872. %K A234873 nonn %O A234873 0,2 %A A234873 _Tim Fulford_, Jan 01 2014