A234900 Primes p with P(p+1) also prime, where P(.) is the partition function (A000041).
2, 3, 5, 131, 167, 211, 439, 2731, 3167, 3541, 4261, 7457, 8447, 18289, 22669, 23201, 23557, 35401, 44507, 76781, 88721, 108131, 126097, 127079, 136319, 141359, 144139, 159169, 164089, 177487, 202627, 261757, 271181, 282911, 291971, 307067, 320561, 389219, 481589, 482627, 602867, 624259, 662107, 682361, 818887, 907657, 914189, 964267, 1040191, 1061689
Offset: 1
Keywords
Examples
a(1) = 2 since P(2+1) = 3 is prime. a(2) = 3 since P(3+1) = 5 is prime. a(3) = 5 since P(5+1) = 11 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..60
Crossrefs
Programs
-
Mathematica
p[k_]:=p[k]=PrimeQ[PartitionsP[Prime[k]+1]] n=0;Do[If[p[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10000}]
Comments