cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.

This page as a plain text file.
%I A234937 #45 May 16 2025 02:11:38
%S A234937 1,1,-1,4,-5,1,18,-29,12,-1,120,-218,119,-22,1,840,-1814,1285,-345,35,
%T A234937 -1,7920,-18144,14674,-5205,805,-51,1,75600,-196356,185080,-79219,
%U A234937 16450,-1624,70,-1,887040,-2427312,2515036,-1258628,324569,-43568,2954,-92,1
%N A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.
%C A234937 Coefficients of the polynomials p_n(b) defined by Product_{k>0} (1-q^k)^(b-1) = Sum n! p_n(b) q^n.
%C A234937 Each row is length 1+n, starting from n=0, and consists of the coefficients of one of the p_n(b).
%C A234937 A210590 is an unsigned version using the form preferred by Nekrasov and Okounkov. This is the form for which Guo-Niu Han's reference below gives the hooklength formula:
%C A234937 p_n(b) = Sum_{lambda partitioning n} Product_{h_{ij} in lambda} (1-b/(h_{ij}^2)).
%C A234937 Coefficients reduced mod 5 are those of 2 times Pascal's triangle and an alternating sign. Other primes have slightly more complex reduction behavior. See second link.
%C A234937 Lehmer's conjecture on the tau function states that the evaluation at b=25 (A000594) is never 0.
%C A234937 The general diagonal and column are probably of combinatorial interest.
%H A234937 Seiichi Manyama, <a href="/A234937/b234937.txt">Rows n = 0..100, flattened</a>
%H A234937 G.-N. Han, <a href="http://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008.
%H A234937 W. J. Keith, <a href="http://arxiv.org/abs/1109.1236">Polynomial analogues of Ramanujan congruences for Han's hooklength formula</a>, arXiv:1109.1236 [math.CO], 2011-2012; Acta Arith. 160 (2013), 303-315.
%F A234937 E.g.f.: Product_{k>0} (1-q^k)^(b-1).
%F A234937 Recurrence: With p_0(b) = 1, p_n(b) = (n-1)!*(b-1)*Sum_{m=1..n} -sigma(m)*p_{n-m}(b) / (n-m)!, sigma being the divisor function.
%e A234937 The coefficient of q^3 in the indeterminate power is (1/6) (18-29b+12b^2-b^3).
%t A234937 nn=10;
%t A234937 Clear[b]; PolyTable = Table[0, {n, 1, nn}];
%t A234937 PolyTable[[1]]=1-b;
%t A234937 For[n = 2, n <= nn, n++,
%t A234937 PolyTable[[n]] = Simplify[(((n - 1)!)*(b - 1))*(Sum[
%t A234937        PolyTable[[n - m]]*(-1*DivisorSigma[1, m]/((n - m)!)), {m, 1,
%t A234937         n - 1}] + (-1*DivisorSigma[1, n]))]];
%t A234937 LongTable = Table[Table[
%t A234937    Which[k == 0, PartitionsP[n]*n!, k > 0,
%t A234937     Coefficient[Expand[PolyTable[[n]]], b^k]], {k, 0, n}], {n, 1, nn}];
%t A234937 Flatten[PrependTo[LongTable,1]]
%Y A234937 Row entries sum to 0.
%Y A234937 A210590 is the unsigned version.
%Y A234937 Starting from row 0: final entry of row n, (-1)^n (A033999).
%Y A234937 From row 1: next-to-last entry of row n, (-1)^(n-1) * n(3n-1)/2 (signed version of A000326).
%Y A234937 First entry of row n, n! * p(n) (A053529).
%Y A234937 Second entry of row n, -1 * n! * (sum of reciprocals of all parts in partitions of n) (negatives of A057623).
%Y A234937 (Sum of absolute values of row entries)/n!: A000712.
%Y A234937 Evaluations at various powers of b, divided by n!, enumerate multipartitions or powers of the eta function. Some special cases that appear in the OEIS:
%Y A234937 b=0: A000041, the partition numbers,
%Y A234937 b=2: A010815, from Euler's Pentagonal Number Theorem,
%Y A234937 b=-1: A000712, partitions into 2 colors,
%Y A234937 b=-11: A005758, reciprocal of the square root of the tau function,
%Y A234937 b=-23: A006922, reciprocal of the tau function,
%Y A234937 b=13: A000735, square root of the tau function,
%Y A234937 b=25: A000594, Ramanujan's tau function.
%K A234937 tabl,sign,easy
%O A234937 0,4
%A A234937 _William J. Keith_, Jan 01 2014