cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234938 Coefficients of Hilbert series for the suboperad of bicolored noncrossing configurations generated by a fully colored triangle and a fully uncolored triangle.

This page as a plain text file.
%I A234938 #20 Feb 02 2025 10:13:30
%S A234938 1,2,8,40,216,1246,7516,46838,299200,1948804,12893780,86415940,
%T A234938 585461380,4003022222,27587072156,191426864328,1336331235624,
%U A234938 9378578814890,66133103587412,468323884345060,3329180643569660,23748479467116032,169944228206075568,1219639212041064130
%N A234938 Coefficients of Hilbert series for the suboperad of bicolored noncrossing configurations generated by a fully colored triangle and a fully uncolored triangle.
%H A234938 Frédéric Chapoton and Samuele Giraudo, <a href="https://arxiv.org/abs/1310.4521">Enveloping operads and bicoloured noncrossing configurations</a>, arXiv preprint arXiv:1310.4521 [math.CO], 2013-2014.
%F A234938 G.f. A(t) satisfies 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)*A(t) + (6+t)*A(t)^2 + (1-2t)*A(t)^3 - A(t)^4 = 0 [Chapoton & Giraudo, Proposition 3.5]. - _Andrey Zabolotskiy_, Feb 02 2025
%t A234938 Rest@CoefficientList[Root[Function[{f}, 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)f + (6+t)f^2 + (1-2t)f^3 - f^4], 2] + O[t]^25, t] (* _Andrey Zabolotskiy_, Feb 02 2025 *)
%Y A234938 Cf. A234939, A052701, A007863, A006013, A006318.
%K A234938 nonn
%O A234938 1,2
%A A234938 _N. J. A. Sloane_, Jan 04 2014
%E A234938 Terms a(9) onwards added and name clarified by _Andrey Zabolotskiy_, Feb 02 2025