This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234938 #20 Feb 02 2025 10:13:30 %S A234938 1,2,8,40,216,1246,7516,46838,299200,1948804,12893780,86415940, %T A234938 585461380,4003022222,27587072156,191426864328,1336331235624, %U A234938 9378578814890,66133103587412,468323884345060,3329180643569660,23748479467116032,169944228206075568,1219639212041064130 %N A234938 Coefficients of Hilbert series for the suboperad of bicolored noncrossing configurations generated by a fully colored triangle and a fully uncolored triangle. %H A234938 Frédéric Chapoton and Samuele Giraudo, <a href="https://arxiv.org/abs/1310.4521">Enveloping operads and bicoloured noncrossing configurations</a>, arXiv preprint arXiv:1310.4521 [math.CO], 2013-2014. %F A234938 G.f. A(t) satisfies 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)*A(t) + (6+t)*A(t)^2 + (1-2t)*A(t)^3 - A(t)^4 = 0 [Chapoton & Giraudo, Proposition 3.5]. - _Andrey Zabolotskiy_, Feb 02 2025 %t A234938 Rest@CoefficientList[Root[Function[{f}, 4t-2t^2-t^3+t^4 + (-4+4t-t^2+2t^3)f + (6+t)f^2 + (1-2t)f^3 - f^4], 2] + O[t]^25, t] (* _Andrey Zabolotskiy_, Feb 02 2025 *) %Y A234938 Cf. A234939, A052701, A007863, A006013, A006318. %K A234938 nonn %O A234938 1,2 %A A234938 _N. J. A. Sloane_, Jan 04 2014 %E A234938 Terms a(9) onwards added and name clarified by _Andrey Zabolotskiy_, Feb 02 2025