This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234950 #67 Jun 28 2024 14:55:14 %S A234950 1,2,1,5,6,2,14,28,20,5,42,120,135,70,14,132,495,770,616,252,42,429, %T A234950 2002,4004,4368,2730,924,132,1430,8008,19656,27300,23100,11880,3432, %U A234950 429,4862,31824,92820,157080,168300,116688,51051,12870,1430 %N A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766. %H A234950 Reinhard Zumkeller, <a href="/A234950/b234950.txt">Rows n=0..125 of triangle, flattened</a> %H A234950 Antoine Abram, Florent Hivert, James D. Mitchell, Jean-Christophe Novelli, and Maria Tsalakou, <a href="https://arxiv.org/abs/2406.16387">Power Quotients of Plactic-like Monoids</a>, arXiv:2406.16387 [math.CO], 2024. See p. 5. %H A234950 Paul Barry, <a href="https://arxiv.org/abs/2001.08799">Characterizations of the Borel triangle and Borel polynomials</a>, arXiv:2001.08799 [math.CO], 2020. %H A234950 Steve Butler, R. Graham, and C. H. Yan, <a href="http://www.math.ucsd.edu/~ronspubs/17_03_parking.pdf">Parking distributions on trees</a>, European Journal of Combinatorics 65 (2017), 168-185. %H A234950 Yue Cai and Catherine Yan, <a href="http://www.math.tamu.edu/~catherine.yan/Files/Borel-main-final.pdf">Counting with Borel's triangle</a>, Texas A&M University. %H A234950 Yue Cai and Catherine Yan, <a href="https://arxiv.org/abs/1804.01597">Counting with Borel's triangle</a>, arXiv:1804.01597 [math.CO], 2018. %H A234950 G. Chatel and V. Pilaud, <a href="http://arxiv.org/abs/1411.3704">Cambrian Hopf Algebras</a>, arXiv:1411.3704 [math.CO], 2014-2015. %H A234950 C. A. Francisco, J. Mermin, and J. Schweig, <a href="http://www.math.okstate.edu/~jayjs/ppt.pdf">Catalan numbers, binary trees, and pointed pseudotriangulations</a>, preprint 2013; European Journal of Combinatorics, Volume 45, April 2015, pp. 85-96. %H A234950 Lord C. Kavi and Michael W. Newman, <a href="https://arxiv.org/abs/2212.08795">Counting closed walks in infinite regular trees using Catalan and Borel's triangles</a>, arXiv:2212.08795 [math.CO], 2022. %H A234950 A. Lakshminarayan, Z. Puchala, and K. Zyczkowski, <a href="http://arxiv.org/abs/1407.1169">Diagonal unitary entangling gates and contradiagonal quantum states</a>, arXiv preprint arXiv:1407.1169 [quant-ph], 2014. %H A234950 Jeffrey B. Remmel, <a href="https://doi.org/10.37236/3210">Consecutive Up-down Patterns in Up-down Permutations</a>, Electron. J. Combin., 21 (2014), #P3.2. See pp. 21-22. - _N. J. A. Sloane_, Jul 12 2014 %F A234950 G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - _Vladimir Kruchinin_, Sep 04 2018 %F A234950 T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - _Peter Luschny_, Sep 04 2018 %e A234950 Triangle begins: %e A234950 1, %e A234950 2, 1, %e A234950 5, 6, 2, %e A234950 14, 28, 20, 5, %e A234950 42, 120, 135, 70, 14, %e A234950 132, 495, 770, 616, 252, 42, %e A234950 429, 2002, 4004, 4368, 2730, 924, 132, %e A234950 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, %e A234950 ... %p A234950 T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)): %p A234950 seq(seq(T(n,k), k=0..n), n=0..8); # _Peter Luschny_, Sep 04 2018 %t A234950 T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2)); %t A234950 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 19 2018, from Maple *) %o A234950 (Haskell) %o A234950 a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]] %o A234950 a234950_row n = map (a234950 n) [0..n] %o A234950 a234950_tabl = map a234950_row [0..] %o A234950 -- _Reinhard Zumkeller_, Jan 12 2014 %o A234950 (PARI) T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1)); %o A234950 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ _Michel Marcus_, Sep 06 2015 %Y A234950 A062991 is a signed version. See also A094385 for another version. %Y A234950 Cf. A009766. %Y A234950 The two borders give the Catalan numbers A000108. %Y A234950 Cf. A062992 (row sums). %Y A234950 The second and third columns give A002694 and A244887. %K A234950 nonn,tabl %O A234950 0,2 %A A234950 _N. J. A. Sloane_, Jan 11 2014