A234956 Trisection of A107926: The least number k such that there are primes p and q with p - q = 6*n+4, p + q = k, and p the least such prime >= k/2.
18, 48, 102, 444, 174, 432, 582, 672, 846, 984, 1902, 636, 1122, 1464, 2730, 3348, 3342, 1752, 5154, 8424, 1842, 5244, 5802, 5076, 9714, 10392, 11898, 11928, 12966, 14796, 7662, 21516, 23202, 39216, 18234, 10572, 8742, 21732, 16770, 38076, 30102, 19884, 54822, 44604
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..855
Programs
-
Mathematica
f[n_] := Block[{p = n/2}, While[ !PrimeQ[n - p], p = NextPrime@ p]; p - n/2]; t = Table[0, {10000}]; k = 4; While[k < 12475000001, If[ t[[f@ k]] == 0, t[[f@ k]] = k; Print[{f@ k, k}]]; k += 2]; Table[ t[[n]], {n, 2, 5000, 3}]
Formula
a(n) = A107926(3n-1).
Comments