cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234963 Number of ways to write n = k + m with k > 0 and m > 2 such that C(2*sigma(k) + phi(m), sigma(k) + phi(m)/2) - 1 is prime, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 0, 3, 2, 2, 3, 3, 5, 3, 4, 3, 3, 3, 2, 3, 0, 3, 3, 4, 3, 0, 1, 2, 3, 1, 2, 3, 3, 1, 3, 3, 4, 1, 2, 3, 3, 2, 6, 4, 1, 4, 2, 3, 2, 2, 2, 4, 3, 2, 3, 3, 2, 4, 3, 3, 0, 2, 3, 1, 3, 1, 2, 0, 3, 1, 4, 4, 4, 1, 0, 5, 2, 1, 3, 2, 2, 1, 2, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 01 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 180.
Clearly, this implies that there are infinitely many primes of the form C(2*n,n) - 1. We have verified the conjecture for n up to 10000.
Note that every n = 400, ..., 9123 can be written as k + m with k > 0 and m > 0 such that f(k, m) = sigma(k) + phi(m) is even and C(f(k, m) + 2, f(k, m)/2 + 1) + 1 is prime, but this fails for n = 9124.

Examples

			a(5) = 1 since 5 = 1 + 4 with C(2*sigma(1) + phi(4), sigma(1) + phi(4)/2) - 1 = C(4, 2) - 1 = 5 prime.
a(28) = 1 since 28 = 2 + 26 with C(2*sigma(2) + phi(26), sigma(2) + phi(26)/2) - 1 = C(18, 9) - 1 = 48619 prime.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_] := DivisorSigma[1, n];
    f[n_,k_] := Binomial[2*sigma[k] + EulerPhi[n-k], sigma[k] + EulerPhi[n-k]/2] - 1;
    a[n_] := Sum[If[PrimeQ[f[n,k]], 1, 0], {k, 1, n-3}];
    Table[a[n], {n, 1, 100}]