A234963 Number of ways to write n = k + m with k > 0 and m > 2 such that C(2*sigma(k) + phi(m), sigma(k) + phi(m)/2) - 1 is prime, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.
0, 0, 0, 1, 1, 2, 3, 0, 3, 2, 2, 3, 3, 5, 3, 4, 3, 3, 3, 2, 3, 0, 3, 3, 4, 3, 0, 1, 2, 3, 1, 2, 3, 3, 1, 3, 3, 4, 1, 2, 3, 3, 2, 6, 4, 1, 4, 2, 3, 2, 2, 2, 4, 3, 2, 3, 3, 2, 4, 3, 3, 0, 2, 3, 1, 3, 1, 2, 0, 3, 1, 4, 4, 4, 1, 0, 5, 2, 1, 3, 2, 2, 1, 2, 1
Offset: 1
Keywords
Examples
a(5) = 1 since 5 = 1 + 4 with C(2*sigma(1) + phi(4), sigma(1) + phi(4)/2) - 1 = C(4, 2) - 1 = 5 prime. a(28) = 1 since 28 = 2 + 26 with C(2*sigma(2) + phi(26), sigma(2) + phi(26)/2) - 1 = C(18, 9) - 1 = 48619 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Mathematica
sigma[n_] := DivisorSigma[1, n]; f[n_,k_] := Binomial[2*sigma[k] + EulerPhi[n-k], sigma[k] + EulerPhi[n-k]/2] - 1; a[n_] := Sum[If[PrimeQ[f[n,k]], 1, 0], {k, 1, n-3}]; Table[a[n], {n, 1, 100}]
Comments