cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234969 Abundant numbers whose aliquot sequence is abundant, deficient, abundant, ..., etc.

This page as a plain text file.
%I A234969 #12 Jan 05 2014 05:15:29
%S A234969 220,1064,1184,2172,2620,5020,6232,10744,12285,17296,63020,66928,
%T A234969 67095,69615,79750,80535,83655,86086,100485,122265,122368,141664,
%U A234969 142310,146344,171856,173500,176272,177340,185368,191260,196724,280540,308620,319550,333920
%N A234969 Abundant numbers whose aliquot sequence is abundant, deficient, abundant, ..., etc.
%C A234969 All smaller members of an amicable pair (A002025) belong to this sequence.
%C A234969 Also abundant members of the sociable quadruple represented in A222977 are here.
%C A234969 Starting at k=3, I found 1, 7, 18, 63, 160, 331, 858 terms up to 10^k.
%e A234969 The aliquot sequence 220->284->220->... has the requested form, so 220 is here.
%e A234969 1064 is here too since its aliquot sequence is 1064->1336->1184->1210->... .
%o A234969 (PARI) isAmicable(n)={my(a=sigma(n)-n); (a<>n) && (sigma(a)-a)==n;} \\ from A063990
%o A234969 isSociableADAD(n)={my(a=sigma(n)-n); if (!a, return (0)); my(b=sigma(a)-a); if(! b, return (0)); my(c=sigma(b)-b); if (!c, return (0)); my(d=sigma(c)-c); if (d != n, return (0)); ((n>a) && (a<b) && (b>c) && (c<n)) || ((n<a) && (a>b) && (b<c) && (c>n));}
%o A234969 isok(n) = {my(oldn = n); my(newn = sigma(oldn) - oldn); my(dir = sign(newn - oldn)); if (!dir || (dir < 0), return (0)); oldn = newn; while (1, newn = sigma(oldn) - oldn; ndir = sign(newn - oldn); if (!ndir || (ndir == dir), return (0)); if (isAmicable(oldn), return(1)); if (isSociableADAD(oldn), return(1)); oldn = newn; dir = ndir;);}
%Y A234969 Cf. A002025, A002046, A063990, A222977, A234970.
%K A234969 nonn
%O A234969 1,1
%A A234969 _Michel Marcus_, Jan 02 2014