A234972 Least prime p < prime(n) such that 2^p - 1 is a primitive root modulo prime(n), or 0 if such a prime p does not exist.
0, 0, 2, 2, 3, 3, 2, 2, 3, 2, 2, 17, 3, 2, 5, 2, 5, 3, 3, 3, 5, 2, 11, 2, 3, 2, 13, 3, 7, 2, 2, 5, 2, 2, 2, 3, 11, 2, 11, 2, 3, 7, 7, 7, 2, 2, 2, 2, 5, 3, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 2, 2, 5, 5, 5, 2, 2, 5, 3, 3, 2, 3, 7, 7, 2, 7, 2, 3, 2, 7, 5, 31, 3, 3, 5, 3, 2, 5, 2, 2, 5, 5, 2, 3, 3, 5, 2, 2, 7, 7
Offset: 1
Keywords
Examples
a(3) = 2 since 2 is a prime smaller than prime(3) = 5 with 2^2 - 1 = 3 a primitive root modulo prime(3) = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
gp[g_,p_]:=Mod[g,p]>0&&(Length[Union[Table[Mod[g^k, p],{k,1,p-1}]]]==p-1) Do[Do[If[gp[2^(Prime[k])-1,Prime[n]],Print[n," ",Prime[k]];Goto[aa]],{k,1,n-1}];Print[n," ",0];Label[aa];Continue,{n,1,100}]
Comments