cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235113 Irregular triangle read by rows: T(n,k) = number of independent vertex subsets of size k of the graph g_n obtained by attaching two pendant edges to each vertex of the complete graph K_n (0 <= k <= 2n).

Original entry on oeis.org

1, 1, 3, 1, 1, 6, 10, 6, 1, 1, 9, 27, 38, 27, 9, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 15, 85, 260, 490, 602, 490, 260, 85, 15, 1, 1, 18, 126, 490, 1215, 2052, 2436, 2052, 1215, 490, 126, 18, 1, 1, 21, 175, 826, 2541, 5467, 8547, 9900, 8547, 5467, 2541, 826, 175, 21, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 13 2014

Keywords

Comments

Sum of entries in row n = 2^{2n-4}*(4 + n) = A079028(n).
In the Maple program P[n] gives the independence polynomial of the graph g_n.

Examples

			Row 1 is 1,3,1; indeed, K_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A, C}.
Triangle begins:
1;
1,3,1;
1,6,10,6,1;
1,9,27,38,27,9,1;
1,12,52,116,150,116,52,12,1;
		

Crossrefs

Programs

  • Maple
    G := (1-z-x*z-x^2*z)/(1-z-2*x*z-x^2*z)^2: Gser := simplify(series(G, z = 0, 10)): for n from 0 to 9 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 9 do seq(coeff(P[n], x, i), i = 0 .. 2*n) end do;# yields sequence in triangular form

Formula

Generating polynomial of row n (n>=0) is (1+x)^{2n-2}*((1+x)^2 + nx) (it is palindromic).
Bivariate generating polynomial: G(x,z) = (1-z-xz-x^2*z)/(1-z-2xz-x^2*z)^2.
G(1/x, x^2*z) = G(x,z) (this implies the above mentioned palindromicity).